# intialize Contextual reranker via langchain_contextual
compressor = ContextualRerank(
model=model,
api_key=api_key,
)
# Prepare metadata in dictionary format for Langchain Document class
metadata_dict = [
{
"Date": "January 15, 2025",
"Source": "NVIDIA Enterprise Sales Portal",
"Classification": "Internal Use Only"
},
{
"Date": "11/30/2023",
"Source": "TechAnalytics Research Group"
},
{
"Date": "January 25, 2025",
"Source": "NVIDIA Enterprise Sales Portal",
"Classification": "Internal Use Only"
}
]
# prepare documents as langchain Document objects
# metadata stored in document objects will be extracted and used for reranking
langchain_documents = [
Document(page_content=content, metadata=metadata_dict[i])
for i, content in enumerate(documents)
]
# print to validate langchain document
print(langchain_documents[0])